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INTRINSIC VOLUMES OF ELLIPSOIDS

Abstract. We deduce explicit formulae for the intrinsic volumes
of an ellipsoid in Rd, d > 2, in terms of elliptic integrals. Namely,
for an ellipsoid E ⊂ Rd with semiaxes a1, . . . , ad we show that

Vk(E) = κk

d∑
i=1

a2i sk−1(a21, . . . , a
2
i−1, a

2
i+1, . . . , a

2
d)

×
∞∫
0

tk−1

(a2i t
2 + 1)

d∏
j=1

√
a2j t

2 + 1

dt

for all k = 1, . . . , d, where sk−1 is the (k−1)-th elementary symmet-
ric polynomial and κk is the volume of the k-dimensional unit ball.
Some examples of the intrinsic volumes Vk with low and high k are
given where our formulae look particularly simple. As an application
we derive new formulae for the expected k-dimensional volume of
random k-simplex in an ellipsoid and random Gaussian k-simplex.

It is with genuine admiration and warm regard that we
dedicate this work to Ildar Ibragimov

on the occasion of his 90th birthday

§1. Introduction and main result

For a non-empty convex compact set K ⊂ Rd, consider its parallel set
of radius r > 0 defined as K + rBd, where Bd is the d-dimensional unit
ball and the operation of Minkowski addition means the pointwise sum of
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two sets. The well-known Steiner formula writes the volume | · |d (i.e., the
Lebesgue measure) of K + rBd as a polynomial of degree d in r:

|K + rBd|d =

d∑
k=0

κd−kVk(K)rd−k, r > 0, (1)

where κk := πk/2/Γ
(
k
2 + 1

)
is the volume of the k-dimensional unit ball.

The coefficients Vk(K), k = 0, . . . , d, above are called intrinsic volumes
of K. They are normalized in a way that if K is k-dimensional, then
Vk(K) coincides with the k-dimensional volume of K.

The intrinsic volumes as well as related Minkowski functionals (or
quermaßintegrals) and tensors of (poly)convex bodies and sets with pos-
itive reach play an important role in convex geometry and in the ap-
plied fields, such as fractal and topological data analysis, compare e.g.
[1, 2, 19,20,29,31].

Although intrinsic volumes are basic and fundamental quantities of con-
vex bodies, their computation is not a simple task even for those classical
shapes like ellipsoids. So far, only indirect results containing the compu-
tation of the surface area as R hypergeometric function [7], an Abelian
integral [30] or Lauricella hypergeometric function [25] and the expression
of intrinsic volumes in terms of Gaussian determinants [12] are available.
Thus, Theorem 1.1 of [12] states that for an arbitrary ellipsoid E ⊂ Rd
with semiaxes a1, . . . , ad we have

Vk(E) =
(2π)k/2

k!
E
√

det(〈Aξi, Aξj〉)ki,j=1,

where A = diag(a1, . . . , ad) and ξ1, . . . , ξk are i.i.d. standard Gaussian
vectors in Rd. Decomposing ξi into independent spherical and radial parts
as ξi = ηi · ‖ξi‖ and noting that η1, . . . , ηd are i.i.d. random vectors in Rd
uniformly distributed on the unit sphere Sd−1 equipped with the Hausdorff
measure σ(·) normalized by σ(Sd−1) yields

Vk(E) =
(2π)k/2

k!
E ‖ξ1‖ . . .E ‖ξk‖ · E

√
det(〈Aηi, Aηj〉)ki,j=1 (2)

=
1

k!κkd−1

∫
(Sd−1)k

√
det(〈Aui, Auj〉)ki,j=1 σ(du1) . . . σ(duk),
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where in the second equation we used that

E ‖ξi‖ =

√
2 Γ(d+1

2 )

Γ(d2 )
, σ(Sd−1) =

2πd/2

Γ(d2 )
.

The later k-fold integration in (2) makes an explicit computation of Vk(E)
particularly complex.

The problem of deriving explicit formulae for Vk(E) is also deeply con-
nected to the hypothesis that ellipsoids are uniquely determined (up to a
rigid motion) by their intrinsic volumes. It is solved positively so far only
in d = 2, 3 [23] as well as for the dual volumes [22].

The main result of our paper gives the formula for Vk(E) in terms of one-
dimensional elliptic integrals. Before formulating it, for a tuple (t1, . . . , tn)
denote by sm(t1, . . . , tn) (where m 6 n) the m-th elementary symmetric
polynomial of t1, . . . , tn defined as

sm(t1, . . . , tn) :=
∑

16i1<...<im6n

m∏
j=1

tij .

Now we are ready to formulate the main theorem.

Theorem 1. For every k ∈ {1, . . . , d} we have

Vk(E) = κk

d∑
i=1

a2
i sk−1(a2

1, . . . , a
2
i−1, a

2
i+1, . . . , a

2
d)

×
∞∫

0

tk−1

(a2
i t

2 + 1)
d∏
j=1

√
a2
j t

2 + 1

dt.

Using a substitute of variables t→
√
t, the integrals in the above formula

can be expressed in terms of the hypergeometric R-function (cf. [8, 6.8-8,
p. 184])

R−s(b, z) =
1

B

(
s,

d∑
j=1

bj − s

) ∞∫
0

ts−1dt
d∏
j=1

(1 + zjt)bj
,
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where B( · , · ) is the usual Beta function and

= (b1, . . . , bd) ∈ Rd, 0 < s <

d∑
j=1

bj ,

z = (z1, . . . , zd) ∈ (C \ (−∞, 0])
d
.

Corollary 2. For every k ∈ {1, . . . , d} we have

Vk(E) =
κk
2
B

(
d+ 2− k

2
,
k

2

)

×
d∑
i=1

a2
i sk−1(a2

1, . . . , a
2
i−1, a

2
i+1, . . . , a

2
d)R−k/2

ei +
1

2

d∑
j=1

ej ,a

 ,

where a = (a2
1, . . . , a

2
d) and e1, . . . , ed is the standard orthonormal basis in

Rd.

To obtain Theorem 1, we derived an auxiliary formula expressing Vk(E)
in terms of the integrals over the unit sphere which might be of independent
interest.

Theorem 3. For every k ∈ {1, . . . , d} we have

Vk(E) =
1

kκd−k

×
d∑
i=1

a2
i sk−1(a2

1, . . . , a
2
i−1, a

2
i+1, . . . , a

2
d)

∫
Sd−1

u2
i

hkE(u)
σ(du), (3)

where u = (u1, . . . , ud) and hE(u) =
√
a2

1u
2
1 + · · ·+ a2

du
2
d is the support

function of E (see Section 4).

Notice that the formulae from Theorem 1 and Theorem 3 are valid for
k = d as well. In this case we have Vd(E) = κda1 · . . . · ad, which means
that some of our formulae can presumably be further simplified for some
k, see Sec. 2.

Theorem 1 readily follows from Theorem 3 and the following proposi-
tion applied with α = 2, β = k. The idea of its proof is taken from [22,
Lemma 2].
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Proposition 4. For i ∈ {1, . . . , d} and α, β ∈ R1 such that β > 0, α >
d− β we have

∫
Sd−1

|ui|ασ(du)

hβE(u)
=

4π(d−1)/2Γ(α+1
2 )

Γ(d+α−β
2 )Γ(β2 )

∞∫
0

tβ−1dt

(a2
i t

2 + 1)α/2
d∏
j=1

√
a2
j t

2 + 1

. (4)

The paper is organized as follows: In Sec. 2, examples of the intrinsic
volumes Vk(E) of low (k = 1, 2) and high (k = d − 1, d − 2) orders are
given. In Sec. 3, our Theorem 1 is applied to get a more explicit form of
the expected k-dimensional volume of convex hulls of k + 1 idependent
random points uniformly distributed in an ellipsoid or having an arbitrary
centered Gaussian distribution law. Sec. 4 contains some preliminaries
from convex and differential geometry which are used in the proofs of our
results located in Sec. 5.

§2. Examples

It is well-known that V0(E) = 1, Vd(E) = κda1 · . . . · ad. From (3) for
k = 1 we get

V1(E) =
1

κd−1

d∑
i=1

a2
i

∫
Sd−1

u2
i

hE(u)
σ(du) =

1

κd−1

∫
Sd−1

√√√√ d∑
i=1

a2
iu

2
i σ(du), (5)

which agrees with (2) and with the Kubota formula for the intrinsic vol-
umes: in case k = 1 it states that

V1(K) =
1

κd−1

∫
Sd−1

hK(u)σ(du)

for any convex body K. On the other hand, from Theorem 1 we obtain

V1(E) = 2

d∑
i=1

∞∫
0

a2
i

(a2
i t

2 + 1)
d∏
j=1

√
a2
j t

2 + 1

dt.
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Taking k = 2 in (3) gives

V2(E) =
1

2κd−2

d∑
i=1

[
a2
i

( d∑
j=1

a2
j − a2

i

) ∫
Sd−1

u2
i

h2
E(u)

σ(du)

]

= π

d∑
i=1

a2
i −

π

σ(Sd−1)

∫
Sd−1

d∑
i=1

a4
iu

2
i

d∑
i=1

a2
iu

2
i

σ(du),

where we used that σ(Sd−1) = 2πκd−2. Applying Proposition 4 with α =
β = 2 leads to

V2(E) = π

d∑
i=1

a2
i − π

d∑
i=1

∞∫
0

a4
i t

(a2
i t

2 + 1)
d∏
j=1

√
a2
j t

2 + 1

dt.

Now let us use the following duality relation for ellipsoids which can be
found in [13, Proposition 4.8]:

Vk(E) =
κk

κdκd−k
Vd(E)Vd−k(Eo), k = 0, . . . , d, (6)

where Eo is the ellipsoid dual to E :

Eo = {x ∈ Rd : 〈x, y〉 6 1, y ∈ E}.

Using this relation and the fact that Eo has semiaxes a−1
1 , . . . , a−1

d we can
easily derive the formulae for Vd−1(E) and Vd−2(E) from the formulae for
V1(Eo) and V2(Eo), respectively:

Vd−1(E) =
a1 . . . ad

2

∫
Sd−1

√√√√ d∑
i=1

a−2
i u2

i σ(du)

= κd−1a
2
1 . . . a

2
d

d∑
i=1

∞∫
0

dt

(t2 + a2
i )

d∏
j=1

√
t2 + a2

j
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and

Vd−2(E) = κd−2a1 . . . ad

d∑
i=1

a−2
i −

a1 . . . ad
2π

∫
Sd−1

d∑
i=1

a−4
i u2

i

d∑
i=1

a−2
i u2

i

σ(du)

= κd−2a1 . . . ad

d∑
i=1

a−2
i

− κd−2a
2
1 . . . a

2
d

d∑
i=1

∞∫
0

a−2
i t

(t2 + a2
i )

d∏
j=1

√
t2 + a2

j

dt.

§3. Expected volumes of random simplices

The intrinsic volumes of ellipsoids have a remarkable connection to the
average volume of random k-simplex, which is formed as a convex hull of
k + 1 isotropic random points. More precisely, let X0, . . . , Xk, 1 6 k 6 d,
be random points in Rd, whose joint distribution is invariant with re-
spect to rotations. We consider their convex hull conv(X0, . . . , Xk), which
is a random (possibly degenerate) simplex, and its k-dimensional volume
|conv(X0, . . . , Xk)|k, which is a well-defined random variable. In [10, Corol-
lary 1.1], it was shown that for any non-degenerate matrix A ∈ Rd×d we
have

E |conv(AX0, . . . , AXk)|k =
κd−k(
d
k

)
κd
Vk(EA) · E |conv(X0, . . . , Xk)|k, (7)

where EA := {x ∈ Rd : x>(A>A)−1x 6 1} is an ellipsoid.
There are two particularly interesting models which formula (7) can

be applied to. For the first model consider a bit more general setup. Let
K ⊂ Rd be a d-dimensional convex body, and let Y0, . . . , Yk, 1 6 k 6 d,
be independent random points uniformly distributed over K. The classical
problem to evaluateMk(K) := E |conv(Y0, . . . , Yk)|k for given K goes back
to Klee [15]. By now, not so many exact formulae for Mk(K) have been
obtained, and those mostly for d = 2 and d = 3. In dimension 2, the
exact formulae forM2(K) are available for triangles [24], regular planar n-
gones [6] and parallelograms [24]. In dimension 3, the formulae for M3(K)
have been derived in case of tetrahedron [18] and cube [33]. In arbitrary
dimension d, Md(K) is known only for the ball [14] and, hence, due to
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affine invariance for any ellipsoid. The situation is more complicated if
k < d since Mk(K) is not affine invariant anymore. For any d and any
1 6 k 6 d, the exact formula forMk(K) is known only in case of a ball [21]
(see also [27, Theorem 8.2.3]). For the functional M1(K) describing the
average distance between two points chosen uniformly inK, some formulae
are known in planar case [5, 9, 28, 32]. A formula for the cube [3] (via the
so-called box integral) is also available in dimension d = 3. However, the
box integral does not have a closed form expression for d > 4. Heinrich [11]
has also obtained a representation of M1(E) for a d-dimensional ellipsoid
E with semi-axes 0 < a1 6 . . . 6 ad in terms of the elliptic integral (5).
Applying Theorem 1 to relation (7), we are able to obtain more explicit
formulae for Mk(E) and all 1 6 k 6 d:

Theorem 5. Let Y0, . . . , Yd be independent random points uniformly dis-
tributed in E. Then for any k ∈ {1, . . . , d}, the expected volume Mk(E) :=
E |conv(Y0, . . . , Yk)|k equals

Mk(E) =
1

2kΓ(k2 + 1)

Γ
( (d+1)(k+1)

2 + 1
)

Γ
( (d+1)(k+1)

2 + 1
2

)( Γ(d2 + 1)

Γ(d+1
2 + 1)

)k+1

×
d∑
i=1

a2
i sk−1(a2

1, . . . , a
2
i−1, a

2
i+1, . . . , a

2
d)

×
∞∫

0

tk−1

(a2
i t

2 + 1)
d∏
j=1

√
a2
j t

2 + 1

dt.

Proof. The result follows directly from (7) applied to X0, . . . , Xk dis-
tributed uniformly inside the unit ball Bd and an affine transformation
mapping Bd to E . Substituting the exact values for E |conv(X0, . . . , Xk)|k
from [27, Theorem 8.2.3] (see also [10, Corollary 1.5]) and the formula for
Vk(E) from Theorem 1 finishes the proof. It should be noted that in order
to simplify the constant we have used the Legendre duplication formula
Γ(z)Γ(z + 1/2) = 21−2z

√
πΓ(2z). �

The second model is the so-called Gaussian random simplex. Let
X0, . . . , Xk, 1 6 k 6 d, be independent standard Gaussian random vectors
in Rd. Their convex hull conv(X0, . . . , Xk) is almost surely a k-simplex.
Its expected k-dimensional volume was calculated by Miles [21, Equation
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(70)]. Using (7) the later result can be generalized to the convex hull of
non-standard Gaussian random vectors.

Theorem 6. Let Y0, . . . , Yd be independent Gaussian centered random
vectors in Rd with non-degenerate covariance matrix Σ. Let λ1, . . . , λd > 0
be the eigenvalues of Σ. For any k ∈ {1, . . . , d} we have

E |conv(Y0, . . . , Yk)|k

=

√
k + 1

Γ(k2 + 1)2k/2

d∑
i=1

λisk−1(λ1, . . . , λi−1, λi+1, . . . , λd)

×
∞∫

0

tk−1

(λit2 + 1)
d∏
j=1

√
λjt2 + 1

dt.

Proof. Let X0, . . . , Xk be independent standard Gaussian random vec-
tors. Consider an affine transformation with matrix Σ1/2 (which is well-
defined since Σ is symmetric and positive definite). It is clear that Σ1/2Xi,
0 6 i 6 k, are independent centered Gaussian random vectors with covari-
ance matrix Σ. Thus, first applying (7) and then [21, Equation (70)] we
have

E |conv(Y0, . . . , Yk)|k = E |conv(Σ1/2X0, . . . ,Σ
1/2Xk)|k

=
κd−k(
d
k

)
κd
Vk(EΣ) · E |conv(X0, . . . , Xk)|k

=
κd−k(
d
k

)
κd
Vk(EΣ) · 2k/2

√
k + 1

k!

Γ(d+1
2 )

Γ(d−k+1
2 )

,

where EΣ := {x ∈ Rd : x>Σ−1x 6 1} is an ellipsoid with semi-axes ai =√
λi > 0, 1 6 i 6 d. Thus, by Theorem 1 we conclude that

E |conv(Y0, . . . , Yk)|k =
(d− k)!

d!

2k/2
√
k + 1

Γ(k2 + 1)

Γ(d2 + 1)Γ(d+1
2 )

Γ(d−k2 + 1)Γ(d−k+1
2 )

×
d∑
i=1

λisk−1(λ1, . . . , λi−1, λi+1, . . . , λd)

×
∞∫

0

tk−1

(λit2 + 1)
d∏
j=1

√
λjt2 + 1

dt.
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Applying the Legendre duplication formula Γ(z)Γ(z + 1/2)
= 21−2z

√
πΓ(2z) twice finishes the proof. �

§4. Basic facts from convex geometry

The mixed volumes V (K1, . . . ,Kd) of convex bodies K1, . . . ,Kd ⊂ Rd
are introduced via the Minkowski theorem as the coefficients of the poly-
nomial expansion

|r1K1 + . . .+ rdKd|d =

d∑
k1,...,kd=1

rk1 . . . rkdV (Kk1 , . . . ,Kkd) (8)

for r1, . . . , rd > 0, which is the generalisation of the Steiner formula, see (1).
They are non-negative and symmetric with respect to all permutations of
the indices of K1, . . . ,Kd, cf. e.g. [26, Theorem 5.1.6]. From (1) and (8) we
immediately have

Vk(K) =
1

κd−k

(
d

k

)
Wd−k(K), k = 0, . . . , d, (9)

where

Wk(K) = V
(
K, . . . ,K︸ ︷︷ ︸

k

,Bd, . . . ,Bd︸ ︷︷ ︸
d−k

)
(10)

are called the quermassintegrals ofK, see more on them e.g. in [26, Chap 4].
Let hK(x) = sup

y∈K
〈x,y〉, x ∈ Rd, be the support function of a convex

body K. For an ellipsoid

E =

{
x = (x1, . . . , xd) ∈ Rd :

d∑
i=1

x2
i

a2
i

6 1

}
we have

hE(x) =

√√√√ d∑
i=1

a2
ix

2
i . (11)

The main ingredient of the proof of Theorem 3 is the formula expressing
the mixed volume of convex bodies in terms of their support functions. To
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formulate it, for arbitrary matrices Q1, . . . , Qd−1 ∈ R(d−1)×(d−1) denote
by D(Q1, . . . , Qd−1) their mixed discriminant defined as (see, e.g., [4])

Dd−1(Q1, . . . , Qd−1) =
1

(d− 1)!

∑
τ∈Sd−1

detQ(τ), (12)

where Sd−1 is the symmetric group on d− 1 elements, τ = (τ(1), . . . ,
τ(d− 1)), and Q(τ) is a matrix whose i-th column coincides with the i-th
column of Qτ(i). Essentially, we compose a matrix using the columns of
Q1, . . . , Qd−1 with pairwise different indices according to a random per-
mutation (uniformly chosen from Sd−1), and then take its expected deter-
minant. Given an arbitrary matrix Q ∈ Rd×d denote by Qi its principal
minor produced by the deleting the i-th row and the i-th column from Q.

Now suppose thatK1, . . . ,Kd are some convex bodies having C2-smooth
boundaries with positive Gaussian curvatures at each point. For a convex
body K ⊂ Rd denote by HK(x) ∈ Rd×d the Hessian matrix of its support
function hK at point x. Then it is known (see e.g. [17, p. 1061]) that

V(K1, . . . ,Kd) =
1

d

d∑
i=1

∫
Sd−1

hK1
(u)Dd−1

(
Hi
K2

(u), . . . ,Hi
Kd

(u)
)
σ(du).

Combining this with (9) and (10) for k > 1 leads to

Vk(K) =

(
d
k

)
dκd−k

(13)

×
d∑
i=1

∫
Sd−1

hK(u)Dd−1

(
Hi
K(u), . . . ,Hi

K(u)︸ ︷︷ ︸
k−1

,Hi
Bd(u), . . . ,Hi

Bd(u)︸ ︷︷ ︸
d−k

)
σ(du).

§5. Proofs

5.1. Proof of Theorem 3. We are going to apply (13) with K = E .
To this end, let us first calculate the mixed discriminant under the inte-
gral in the right-hand side of (13). It follows by straightforward double
differentiation of the right-hand side of (11) that

HE(u) = h−3
E (u)A(u),
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where

A(u) = h2
E(u) diag(a2

1, . . . , a
2
d)− (a2

1u1, . . . , a
2
dud)

>(a2
1u1, . . . , a

2
dud)

=


a2

1(h2
E(u)− a2

1u
2
1) −a2

1a
2
2u1u2 . . . −a2

1a
2
du1ud

−a2
2a

2
1u2u1 a2

2(h2
E(u)− a2

2u
2
2) . . . −a2

2a
2
du2ud

. . . . . . . . . . . .
−a2

da
2
1udu1 −a2

da
2
2udu2 . . . a2

d(h
2
E(u)− a2

du
2
d)

.
In particular, recalling that u ∈ Sd−1 we have

HBd(u) = ‖u‖−3(Id − uu>) = Id − uu>

=


1− u2

1 −u1u2 . . . −u1ud
−u1u2 1− u2

2 . . . −u2ud
. . . . . . . . . . . .
−u1ud −u2ud . . . 1− u2

d

 .

Using this and the linearity of the mixed discriminants we arrive at

Dd−1

(
Hi
E(u), . . . ,Hi

E(u)︸ ︷︷ ︸
k−1

, Hi
Bd(u), . . . ,Hi

Bd(u)︸ ︷︷ ︸
d−k

)
(14)

= h3−3k
E (u)Dd−1

(
Ai(u), . . . , Ai(u)︸ ︷︷ ︸

k−1

, Hi
Bd(u), . . . ,Hi

Bd(u)︸ ︷︷ ︸
d−k

)
.

By (12) we have

Dd−1

(
Ai(u), . . . , Ai(u)︸ ︷︷ ︸

k−1

, Hi
Bd(u), . . . ,Hi

Bd(u)︸ ︷︷ ︸
d−k

)
=

∑
τ∈Sd−1

q
(i)
τ (u)

(d− 1)!
, (15)

where q(i)
τ (u) is the determinant of the matrix composed of k−1 columns of

Ai(u) and d−k columns of Hi
Bd(u) chosen according to the permutation τ .

Since for i = 1, . . . , d and τ ∈ Sd−1 all q(i)
τ (u) look similar, it is enough

to compute only one of them: the rest will be derived by changing the
variables. Consider for simplicity q

(d)
id (u) corresponding to i = d and to

the identical permutation. We have that q(d)
id (u) is the determinant of the
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matrix

a21(h
2
E(u)−a21u

2
1) . . . −a21a

2
k−1u1uk−1 −u1uk . . . −u1ud−1

. . . . . . . . . . . . . . . . . .
−a2k−1a

2
1uk−1u1 . . . a2k−1(h

2
E(u)−a2k−1u

2
k−1) −uk−1uk . . . −uk−1ud−1

− a2ka
2
1uku1 . . . −a2ka

2
k−1ukuk−1 1− u2

k . . . −ukud−1

. . . . . . . . . . . . . . . . . .
−a2d−1a

2
1ud−1u1 . . . −a2d−1a

2
k−1ud−1uk−1 −ud−1uk . . . 1− u2

d−1


.

Taking the factor a2
j out of the j-th column, j = 1, . . . , k − 1, leads to

q
(d)
id (u) =

k−1∏
j=1

a2
j · det

(
C1 C2

C3 C4

)
, (16)

where
C1 = h2

E(u)Ik−1 − (a2
1u1, . . . , a

2
k−1uk−1)>(u1, . . . , uk−1)

= h2
E(u)Ik−1 − v>1 u1,

C2 = −(u1, . . . , uk−1)>(uk, . . . , ud−1) = −u>1 u2,

C3 = −(a2
kuk, . . . , a

2
d−1ud−1)>(u1, . . . , uk−1) = −v>2 u1,

C4 = Id−k − (uk, . . . , ud−1)>(uk, . . . , ud−1) = Id−k − u>2 u2.

(17)

Here, we used the notation

u1 = (u1, . . . , uk−1), u2 = (uk, . . . , ud−1),

v1 = (a2
1u1, . . . , a

2
k−1uk−1), v2 = (a2

kuk, . . . , a
2
d−1ud−1).

Matrix C4 is invertible with

C−1
4 = Id−k +

u>2 u2

1− ‖u2‖2
. (18)

Using the well-known formula for the determinant of a block matrix (see
e.g. [16, Lemma 5]), we obtain

q
(d)
id (u) =

k−1∏
j=1

a2
j · det(C1 − C2C

−1
4 C3) detC4. (19)

First of all, using the Weinstein–Aronszajn identity

det(Im +M1M2)=det(In +M2M1), M1∈Rm×n, M2∈Rn×m, (20)

with M1 = (1− ‖u2‖2)−1u>2 ,M2 = u2 we obtain from (18) that

detC4 = 1− ‖u2‖2. (21)
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Further using (17) and (18), we calculate

C2C
−1
4 C3 = u>1 u2

(
Id−k +

u>2 u2

1− ‖u2‖2

)
v>2 u1

=

(
1 +

‖u2‖2

1− ‖u2‖2

)
u>1 (u2v

>
2 )u1 = λu>1 u1,

where

λ :=
u2v

>
2

1− ‖u2‖2
∈ R.

Therefore,

det(C1 − C2C
−1
4 C3) = det

(
h2
E(u)Ik−1 − v>1 u1 − λu>1 u1

)
= h2k−2

E (u) det
(
Ik−1 − h−2

E (u)(v>1 + λu>1 )u1

)
.

Again applying the Weinstein–Aronszajn identity with M1 = v>1 + λu>1
and M2 = u1 and noting that h2

E(u) = u1v
>
1 + u2v

>
2 + a2

du
2
d leads to

det(C1 − C2C
−1
4 C3) = h2dk−2

E (u)
(
1− h−2

E (u)u1(v>1 + λu>1 )
)

= h2k−4
E (u)

(
h2
E(u)− u1v

>
1 − λu1u

>
1

)
= h2k−4

E (u)

(
u2v

>
2 + a2

du
2
d −

‖u1‖2

1− ‖u2‖2
(u2v

>
2 )

)
= h2k−4

E (u)
u2
du2v

>
2 + a2

du
2
d(u

2
d + ‖u1‖2)

1− ‖u2‖2
.

Finally, combining this with (19) and (21) gives

q
(d)
id (u) =

k−1∏
j=1

a2
jh

2k−4
E (u)

(
u2
du2v

>
2 + a2

du
2
d(u

2
d + ‖u1‖2)

)
(22)

= u2
dh

2k−4
E (u)

k−1∏
j=1

a2
j

 d∑
j=k

a2
ju

2
j + a2

d

k−1∑
j=1

u2
j


= u2

dh
2k−4
E (u)

k−1∏
j=1

a2
j

hE(u)−
k−1∑
j=1

a2
ju

2
j + a2

d

k−1∑
j=1

u2
j

 .

Now consider q(d)
τ for an arbitrary permutation τ ∈ Sd−1. By the simul-

taneous rearrangement of the rows and columns (thus non-changing the
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determinant) it is possible to bring the matrix corresponding to q(d)
τ to the

same block form as in (16), and repeating the above reasoning we get

q(d)
τ (u) = u2

dh
2k−4
E (u)

k−1∏
j=1

a2
τ(j)

hE(u)−
k−1∑
j=1

a2
τ(j)u

2
τ(j) + a2

d

k−1∑
j=1

u2
τ(j)

.
Summing this up over τ ∈ Sd−1 leads to∑

τ∈Sd−1

q(d)
τ (u) = (k − 1)!(d− k)!u2

dh
2k−4
E (u)

×
∑
I⊂Jd
|I|=k−1

∏
j∈I

a2
j

a2
du

2
d +

∑
j∈Jd\I

a2
ju

2
j + a2

d

∑
j∈I

u2
j

 ,
where we used the notation Ji := {1, . . . , d}\{i} for i = 1, . . . , d. Similarly,
for arbitrary i we have∑

τ∈Sd−1

q(i)
τ (u) = (k − 1)!(d− k)!h2k−4

E (u)u2
i (23)

×
∑
I⊂Ji
|I|=k−1

∏
j∈I

a2
j

a2
iu

2
i +

∑
j∈Ji\I

a2
ju

2
j + a2

i

∑
j∈I

u2
j

. (24)

Let us sum this up over i dealing with each summand in the inner brackets
separately. To simplify the notation, we will write

ai := (a2
1, . . . , a

2
i−1, a

2
i+1, . . . , a

2
d), 1 6 i 6 d,

ai,j := (a2
1, . . . , a

2
i−1, a

2
i+1, . . . , a

2
j−1, a

2
j+1, . . . , a

2
d), 1 6 i < j 6 d,

and ai,j = aj,i for i > j. Firstly,

d∑
i=1

u2
i

∑
I⊂Ji
|I|=k−1

∏
j∈I

a2
j · (a2

iu
2
i )

 =

d∑
i=1

a2
iu

4
i · sk−1(ai). (25)
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Secondly, by exchanging the summation order we get

d∑
i=1

u2
i

∑
I⊂Ji
|I|=k−1

∏
j∈I

a2
j

∑
j∈Ji\I

a2
ju

2
j

 =

d∑
i=1

u2
i

∑
j∈Ji

a2
ju

2
j

∑
I⊂Ji,j
|I|=k−1

∏
j∈I

a2
j

=

d∑
i,j=1
i6=j

a2
iu

2
iu

2
j · sk−1(ai,j),

where Ji,j := {1, . . . , d} \ {i, j} for any i 6= j. Finally, again by exchanging
the summation order

d∑
i=1

u2
i

∑
I⊂Ji
|I|=k−1

∏
j∈I

a2
j

a2
i

∑
j∈I

u2
j

 =

d∑
i=1

a2
iu

2
i

∑
j∈Ji

a2
ju

2
j

∑
I⊂Ji,j
|I|=k−2

∏
j∈I

a2
j

=

d∑
i,j=1
i 6=j

a2
iu

2
i a

2
ju

2
j · sk−2(ai,j).

Further we note that

sk−1(ai) = sk−1(ai,j) + a2
jsk−2(ai,j)

and thus

d∑
i=1

u2
i

∑
I⊂Ji
|I|=k−1

∏
j∈I

a2
j

∑
j∈Ji\I

a2
ju

2
j

+

d∑
i=1

u2
i

∑
I⊂Ji
|I|=k−1

∏
j∈I

a2
j

a2
i

∑
j∈I

u2
j


=

d∑
i,j=1
i6=j

a2
iu

2
iu

2
j · (sk−1(ai,j) + a2

jsk−2(ai,j)) =

d∑
i,j=1
i6=j

a2
iu

2
iu

2
j · sk−1(ai).
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Combining this with (23) and (25) we arrive at
d∑
i=1

∑
τ∈Sd−1

q(i)
τ (u) = (k − 1)!(d− k)!h2k−4

E (u)

×
( d∑
i=1

a2
iu

4
i · sk−1(ai) +

d∑
i,j=1
i 6=j

a2
iu

2
iu

2
j · sk−1(ai)

)

= (k − 1)!(d− k)!h2k−4
E (u)

d∑
i=1

a2
iu

2
i sk−1(ai),

where in the last step we used that
d∑
i=1

u2
i = 1. Recalling (13)–(15) con-

cludes the proof.

5.2. Proof of Proposition 4. The key ingredient of the proof is the
following simple observation: for c, γ > 0 we have

∞∫
0

tγ−1e−ct
2

dt =
c−γ/2

2

∞∫
0

(ct2)γ/2−1e−ct
2

d(ct2) =
c−γ/2

2
Γ

(
γ

2

)
. (26)

Passing to the spherical coordinates and having in mind that hE(·) is ho-
mogeneous of degree 1 we can write∫
Rd

|xi|αh−βE (x)e−‖x‖
2

dx =

∫
Sd−1

|ui|αh−βE (u)

∞∫
0

rd+α−β−1e−r
2

drσ(du) (27)

=
1

2
Γ

(
d+ α− β

2

) ∫
Sd−1

|ui|αh−βE (u)σ(du),

where in the last step we used (26) with c = 1, γ = d+α−β. Now using (27)
and applying (26) with c = h2

E(x), γ = β leads to∫
Sd−1

|ui|αh−βE (u)σ(du) =
2

Γ(d+α−β
2 )

∫
Rd

|xi|αh−βE (x)e−‖x‖
2

dx (28)

=
2

Γ(d+α−β
2 )

∫
Rd

[
2

Γ(β2 )

∞∫
0

tβ−1e−h
2
E(x)t2dt

]
|xi|αe−‖x‖

2

dx
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=
4

Γ(d+α−β
2 )Γ(β2 )

×
∞∫

0

tβ−1

[ ∞∫
−∞

|xi|αe−(a2i t
2+1)x2

i dxi
∏
j 6=i

∞∫
−∞

e−(a2j t
2+1)x2

j dxj

]
dt, (29)

where in the last step we used that h2
E(x) = a2

1x
2
1 + · · · + a2

dx
2
d and the

Fubini theorem. Applying (26) to the inner integrals gives
∞∫
−∞

|xi|αe−(a2i t
2+1)x2

i dxi = 2

∞∫
0

xαi e
−(a2i t

2+1)x2
i dxi =

Γ(α+1
2 )

(a2
i t

2 + 1)(α+1)/2

and
∞∫
−∞

e−(a2j t
2+1)x2

j dxj = 2

∞∫
0

e−(a2j t
2+1)x2

j dxj =

√
π

(a2
j t

2 + 1)1/2
,

which together with (28) concludes the proof.

5.3. Proof of Theorem 1. Theorem 1 follows from Theorem 3 and
Proposition 4 applied with α = 2, β = k, and the observation that for
such α, β we have

1

kκd−k
·

4π(d−1)/2Γ( 3
2 )

Γ(d+2−k
2 )Γ(k2 )

= κk.
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